首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44037篇
  免费   4042篇
  国内免费   3700篇
化学   26039篇
晶体学   388篇
力学   1308篇
综合类   714篇
数学   7716篇
物理学   15614篇
  2023年   426篇
  2022年   574篇
  2021年   1504篇
  2020年   1078篇
  2019年   1147篇
  2018年   910篇
  2017年   1037篇
  2016年   1364篇
  2015年   1312篇
  2014年   1616篇
  2013年   3648篇
  2012年   2056篇
  2011年   2351篇
  2010年   2079篇
  2009年   2686篇
  2008年   2807篇
  2007年   2925篇
  2006年   2364篇
  2005年   1712篇
  2004年   1614篇
  2003年   1600篇
  2002年   1498篇
  2001年   1318篇
  2000年   1044篇
  1999年   820篇
  1998年   746篇
  1997年   585篇
  1996年   667篇
  1995年   592篇
  1994年   644篇
  1993年   635篇
  1992年   588篇
  1991年   421篇
  1990年   347篇
  1989年   294篇
  1988年   307篇
  1987年   245篇
  1986年   283篇
  1985年   367篇
  1984年   290篇
  1983年   151篇
  1982年   325篇
  1981年   497篇
  1980年   438篇
  1979年   478篇
  1978年   378篇
  1977年   286篇
  1976年   247篇
  1974年   79篇
  1973年   173篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
In the last decade, the field of stimuli-responsive luminescent materials have been intensely emerged because of the high potential application to functional sensors or photoelectronic devices. In particular, luminescent molecular crystals constructed from Au(I) complexes have produced a wide range of examples of luminescent alterations when some external stimulations, such as heat, mechanical stress, vapor (or solvents), were applied to the solid samples. In this review, we describe the recent progress through a summary of the reported Au(I) complexes based on their utilized stimuli-responsive mechanisms, which are categorized in crystal phase transitions (“crystal-to-amorphous”, “crystal-to-crystal” and “single-crystal-to-single-crystal” transitions) and molecular rotation in crystalline media, respectively.  相似文献   
12.
13.
High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5?μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, IR spectroscopy etc. III-V compounds with a lattice constant of about 6.1?Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ~8?μm in case of pseudomorphic AlGaAs-based quantum cascade lasers or requires utilization of thick metamorphic InxAl1-xAs buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded InxAl1-xAs MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As heterostructures with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6?μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at T?=?10–300?K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including in-situ reflection high-energy electron diffraction, atomic force microscopy (AFM), scanning and transmission electron microscopies, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As4/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3?×?107 cm?2), increase of the thickness of the low-TD-density near-surface MBL region to 250–300?nm, the extremely low surface roughness with the RMS value of 1.6–2.4?nm, measured by AFM, as well as rather high 3.5?μm-PL intensity at temperatures up to 300?K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.  相似文献   
14.
Molecular syntheses largely rely on time‐ and labour‐intensive prefunctionalization strategies. In contrast, C?H activation represents an increasingly powerful approach that avoids lengthy syntheses of prefunctionalized substrates, with great potential for drug discovery, the pharmaceutical industry, material sciences, and crop protection, among others. The enantioselective functionalization of omnipresent C?H bonds has emerged as a transformative tool for the step‐ and atom‐economical generation of chiral molecular complexity. However, this rapidly growing research area remains dominated by noble transition metals, prominently featuring toxic palladium, iridium and rhodium catalysts. Indeed, despite significant achievements, the use of inexpensive and sustainable 3d metals in asymmetric C?H activations is still clearly in its infancy. Herein, we discuss the remarkable recent progress in enantioselective transformations via organometallic C?H activation by 3d base metals up to April 2019.  相似文献   
15.
Along with the rapid development of industry, VOCs gradually move into the spotlight, and now become a kind of harmful environmental pollutants that cannot be overlooked. This paper introduces the hazards of VOCs and the common catalytic combustion catalysts, noble metal catalysts and non-noble metal catalysts, for the elimination of VOCs. Perovskite catalysts, as one of the non-noble catalysts, play an important role in the field of catalytic combustion in recent years. According to the classification of elements doping in perovskites, the research achievements in the past five years were analyzed and reviewed. In addition, this paper also analyzes and elaborates the reaction kinetics and QSAR/QSPR models for the introduction of structural properties and reaction mechanisms.  相似文献   
16.
Dr. Qing Tang 《Chemphyschem》2019,20(4):595-601
Among the widely studied 2D transition metal dichalcogenides (TMDs), MoTe2 has attracted special interest for phase-change applications due to its small 2H-1T′ energy difference, yet a large scale phase transition without structural disruption remains a significant challenge. Recently, an interesting long-range phase engineering of MoTe2 has been realized experimentally by Ca2N electride. However, the interface formed between them has not been well understood, and moreover, it remains elusive how the presence of Ca2N would affect the basal plane reactivity of MoTe2. To address this, we performed density functional theory (DFT) calculations to investigate the potential of tuning the phase stability and chemical reactivity of a MoTe2 monolayer via interacting with Ca2N to form a van der Walls heterostructure. We found that the contact nature at the 2H-MoTe2/Ca2N interface is Schottky-barrier-free, allowing for the spontaneous electron transfer from Ca2N to 2H-MoTe2 to make it strongly n-type doped. Moreover, Ca2N doping significantly lowers the energy of 1T′-MoTe2 and dynamically triggers the 2H-to-1T′ transformation. The Ca2N-induced phase modulation can also be applied to tune the phase energetics of MoS2 and MoSe2. Furthermore, using H adsorption as the testing ground, we also find that the H binding on the basal plane of MoTe2 is enhanced after forming heterostructure with Ca2N, potentially providing basis for surface modification and other related catalytic applications.  相似文献   
17.
X-ray imaging functionalization of biodegradable polyesters is a great demand and challenge in biomedical applications.In this work,a strategy of in-chain functionalization through the combination of ring opening copolymerization and oxime "Click" postfunctionalization was developed towards X-ray opaque polylactide copolymers.A functionalized cyclic carbonate was first synthesized and used as comonomer of polylactide copolymers,which were subjected to postfunctionalization of oxime "Click" reaction towards iodinated polylactide copolymers.The chemical structure and physical properties of the target products were traced and confirmed.In vitro cytotoxicity evaluation with 3T3-Swiss albino by Alamar blue demonstrated a low cytotoxicity.The X-ray radiopacity was analyzed by Micro-CT and quantified by Hounsfield Units value,which could be tailorable by the feedstock.It is a promising X-ray visible implantable biomaterial in biomedical applications.  相似文献   
18.
Respiratory infections are a real threat for humans, and therefore the pig model is of interest for studies. As one of a case for studies, Actinobacillus pleuropneumoniae (APP) caused infections and still worries many pig breeders around the world. To better understand the influence of pathogenic effect of APP on a respiratory system—lungs and tracheobronchial lymph nodes (TBLN), we aimed to employ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF MSI). In this study, six pigs were intranasally infected by APP and two were used as non-infected control, and 48 cryosections have been obtained. MALDI-TOF MSI and immunohistochemistry (IHC) were used to study spatial distribution of infectious markers, especially interleukins, in cryosections of porcine tissues of lungs (necrotic area, marginal zone) and tracheobronchial lymph nodes (TBLN) from pigs infected by APP. CD163, interleukin 1β (IL-1β) and a protegrin-4 precursor were successfully detected based on their tryptic fragments. CD163 and IL-1β were confirmed also by IHC. The protegrin-4 precursor was identified by MALDI-TOF/TOF directly on the tissue cryosections. CD163, IL-1β and protegrin-4 precursor were all significantly (p < 0.001) more expressed in necrotic areas of lungs infected by APP than in marginal zone, TBLN and in control lungs.  相似文献   
19.
ABSTRACT

This study computes the potential energy curves of the X1Σ+, A1Π, B1Δ, C1Σ+, and D1Π states of AlO+ cation and the transition dipole moments between them. The orders of the rotationless radiative lifetimes are 10–100?μs for the A1Π state, 1–1000?ms for the B1Δ state, 10?ns for the first well and 100?ns for the second well of the C1Σ+ state, and 1?μs for the D1Π state. Emissions of the B1Δ–A1Π and D1Π–C1Σ+ systems are so weak that they are hardly measured via spectroscopy, the emissions of the C1Σ+–X1Σ+, C1Σ+–A1Π, and D1Π–X1Σ+ systems are so strong that they can be detected readily, and emissions of the A1Π–X1Σ+ and D1Π–A1Π systems can be observed through spectroscopy only by a significant effort. There is a strong great similarity between spontaneous emissions of the A1Π–X1Σ+ system of the AlO+ cation and the A2Π–X2Σ+ system of the AlO radical. The emissions of the A2Π–X2Σ+ system of the AlO radical have been measured in outer space Therefore, it is highly possible that the emissions of the A1Π–X1Σ+ system of the AlO+ cation can be detected in the astrophysical media.  相似文献   
20.
The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio’s theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号